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Abstract: Artificial intelligence (AI) models applied to scientific discovery typically mimic
rather than complement the efforts of human scientists and inventors. Here we show that
incorporating the distribution of human expertise by training unsupervised models on inferences
cognitively available to experts dramatically improves AI prediction of future discoveries. These
models succeed by predicting human predictions and the scientists who will make them. By
tuning AI to avoid the crowd, however, we can generate scientifically promising “alien”
hypotheses unlikely to be imagined or pursued without intervention until the distant future,
which we demonstrate hold promise to punctuate scientific advance beyond questions currently
pursued. By identifying and correcting for collective human bias, these models also suggest
opportunities to improve human prediction by reformulating science education for discovery.

One-Sentence Summary: AI models for scientific discovery can accelerate advance by
mimicking or avoiding the distribution of human experts.
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Main Text: Research across applied science and engineering, from materials discovery to drug

and vaccine development, is hampered by enormous design spaces that overwhelm researchers’

ability to evaluate the full range of potentially valuable candidate designs (1). To face this

challenge, researchers have initialized data-driven AI models with the contents of published

scientific results to create powerful prediction engines that infer future findings. These models

are being used to enable discovery of novel materials with desirable properties (2) and targeted

construction of new therapies (3). Such efforts typically ignore the distribution of scientists,

however, the human prediction engines who continuously alter the landscape of innovation. As a

result, AI algorithms unwittingly compete with experts, failing to complement them and augment

collective advance. As we demonstrate below, incorporating knowledge of human experts and

expertise can improve predictions of future discoveries by more than 100% above content-based

AI methods that ignore them. But with tens of millions of active scientists and engineers around

the world, is the production of artificial intelligences that mimic human capacity our most

strategic or ethical investment? By not mimicking, but rather avoiding human inferences we can

design “alien” AIs that radically augment rather than replace human capacity. Compensating for

the bias of collective human discovery, we demonstrate how human-avoiding or alien algorithms

broaden the scope of things discovered by identifying hypotheses unlikely for scientists to

imagine or pursue with amplified signals of scientific promise.

Our analysis builds on insights underlying the wisdom of crowds (4), which hinges on the

independence and diversity of crowd members’ information (5) and approach (6). In scientific

crowds, findings established by more distinct methods and researchers are much more likely to

replicate (7, 8). If we model discovery as establishing a novel link among otherwise disconnected
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concepts (9), no discovery can occur until discoverers arise with viewpoints diverse enough to

cover the fields required to imagine connecting those concepts (Fig. 1A). This diversity of

scientific viewpoints was implicitly drawn upon by Donald Swanson in a heuristic approach to

knowledge generation. For example, he hypothesized that if Raynaud’s disorder was linked to

blood viscosity in one literature, and fish oil was known to decrease that viscosity in another,

then fish oil might lessen the symptoms of Raynaud’s disorder but would unlikely be arrived at

by the sparse scientific community available to infer it (10–12), one of several hypotheses later

experimentally validated (13–15). Our approach scales and makes this heuristic continuous,

combining it with explicit measurement of the distribution of scientific expertise, and drawing

upon advances in unsupervised manifold learning (16). Recent efforts to generate scientific

hypotheses rely heavily on scientific literature, but ignore equally available publication

meta-data. By programmatically incorporating information on the evolving distribution of

scientific expertise, our approach balances exploration and exploitation in experimental search

that enables us to both accelerate discoveries predicted to appear in future and punctuate advance

by identifying promising experiments unlikely to be pursued in the near term without

intervention.

The distribution of research experts across topics and time represents a critical social fact that

can stably improve our inferences about whether possible scientific relationships have already or

will soon be attempted. It can also inform our understanding of whether relationships will remain

unimagined and unexplored until the more distant future (9). First, we incorporate researcher

expertise and collaboration networks as useful meta-data to a precise replication of a recent,

prominent analysis that predicted materials having desirable electrochemical properties from

prior literature encoded with unsupervised neural network methods (17). We show that simply
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adding this researcher information, using a formally identical approach, dramatically (~100%)

improves prediction of materials to be discovered with targeted properties. Next, we extended

this approach to identify a much broader matrix of materials and their functional properties (18),

demonstrating comparable increases for predicting thousands of drugs to treat more than a

hundred distinct human diseases, including vaccines and therapies for COVID-19. Finally, we

use expert awareness to identify and validate the scientific and technological benefit of

additionally pursuing “alien” research avenues unlikely to be explored by unassisted human

experts.

Accounting for Human Experts in Machine Prediction

We model the distribution of inferences cognitively available to scientists by constructing a

hypergraph over research publications. A hypergraph is a generalized graph where an edge

connects a set, rather than a pair, of nodes. Our research hypergraph is mixed, containing nodes

corresponding not only to materials and properties mentioned in title or abstract, but also the

researchers who investigate them (Fig. 1C, first step). Random walks over this hypergraph

suggest paths of inference cognitively available to active scientists, which can be used to identify

mixtures of diverse expertise sufficient for discoveries. If a valuable material property (e.g.,

ferroelectricity—reversible electric polarization useful in sensors) is investigated by a scientist

who, in prior research, worked with lead titanate (PbTiO3, a ferroelectric material), that scientist

is more likely to consider whether lead titanate is ferroelectric than a scientist without the

research experience. If that scientist later coauthors with another who has previously worked

with sodium nitrite (NaNO2, another ferroelectric material), that scientist is more likely to

consider that sodium nitrite may have the property through conversation than a scientist without
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the personal connection. The density of random walks over this research hypergraph will be

proportional to the density of cognitively plausible and conversationally attainable inferences. If

two literatures share no scientists, a random walk over our hypergraph will rarely bridge them,

just as a scientist will rarely consider connecting a property valued only in one with a material

understood only in another (Fig. 1A).

These random walks induce meaningful proximities between nodes in our mixed hypergraph.

The proximity of a material to a scientist measures the likelihood that she is or will become

familiar with that concept through research experience, related reading, or social interaction. The

proximity of materials to one another suggests that they may be substitutes or complements

within the same experiment. The proximity of a material to a property suggests the likelihood

that the material may possess the property, but also that a scientist will discover and publish it

(Fig. S1A, S1B). In this way, our hypergraph-induced proximities incorporate physical and

material properties latent within literature, but also the complementary distribution of scientists,

enabling us to anticipate likely inferences and predict upcoming discoveries.

Our model (i) initiates a random walk over the research hypergraph with a valued property (e.g.,

ferroelectricity), (ii) randomly selects an article (hyperedge) with that property, (iii) randomly

selects a material or author from that article, then (iv) randomly selects another article with that

material or author, etc., then repeats this Markov process (19, 20) (see Fig. 1B for an example).

The author nodes in our hypergraph severely outnumber the materials. To compensate for this

imbalance, we devise a non-uniform sampling distribution parameterized by 𝛼, which determines

the fraction of material to author nodes in the resulting sequences (See Supplementary Text and

Fig. S2 for details). Random walks induce similarity metrics that capture the relevance of nodes

5

https://paperpile.com/c/is3EgU/dXmDn+NqUzL


to one another. The first metric we use draws upon the local hypergraph structure to estimate the

transition probability that a random walker travels from one node to another within a fixed

number of steps (see Supplementary Text). Our second metric is based on a popular,

unsupervised neural network-based embedding algorithm (deepwalk(21)) over the generated

random walks. This method is formally identical to the word embedding method used in the

replicated prior work described above (17), but which we apply to our hypergraph, considering

every random walk sequence a “sentence” linking materials, experts and functional properties

(e.g., store energy; cure breast cancer, vaccinate against COVID-19). Because inferred

discoveries involve relevant materials, we train the deepwalk embedding model after excluding

authors from our random walk sequences (Fig. 1C). The resulting embedding maps every node to

a numerical vector, with the dot-product between any pair reflecting the human-inferrable

relatedness of corresponding nodes. We also create a comparable embedding space using deeper

graph convolutional neural networks, which confirms the pattern of results presented here (see

Methods and Supplementary Text).

Accelerating science by predicting future discoveries

To demonstrate the power of accounting for human experts, we use transition probability and

deepwalk metrics to build discovery predictors and evaluate their predictions against the

ground-truth discoveries that occur in reality. Moreover, we contrast our predictions with

replicated word embedding-based prior work that does not account for human expertise (17)

(labeled “word2vec”) as well as a random baseline. In our numerical experiments, evaluated

algorithms assess the similarity between each property and the materials available to scientists in

the literature published prior to a given prediction year (e.g., 2001), then selects the 50 most
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similar as predicted discoveries. Quality of predictions are evaluated based on materials

discovered and published after the prediction year (see Methods for further details).

Energy-related Materials Prediction

In the first set of our experiments, we considered the valuable electrochemical properties of

thermoelectricity, ferroelectricity and photovoltaic capacity against a pool of 100K candidate

compounds. Following the evaluation regime of Tshitoyan et al. on the same dataset (1.5M

scientific articles about inorganic materials) (17), we repeated identical analyses for 17

prediction periods, with prediction years ranging from 2001 to 2017, predicting future

discoveries as a function of research publicly available to contemporary scientists. We computed

annual precisions until the end of 2018, such that the longest precision array was nearly two

decades (18 years, from 2001 to 2018) and the shortest was 2 (2017-2018, Fig. S1C). Results

indicate that predictions accounting for the distribution of scientists outperformed baselines for

all properties and materials by an average of 100% (Fig. 2A-C).

Drug Repurposing Prediction

We used the same approach to explore the repurposing of ~4K existing FDA-approved drugs to

treat 100 important human diseases. We used the MEDLINE database of biomedical research

publications and set the prediction year to 2001 (Fig. S1C). Ground-truth discoveries were based

on drug-disease associations established by expert curators of the Comparative Toxicogenomics

Database (CTD) (22), which chronicles the capacity of chemicals to influence human health. Fig.

2E reports prediction precisions 19 years after the prediction year, revealing how accounting for

the distribution of biomedical experts in our unsupervised hypergraph embedding yields
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predictions with 43% higher precision than identical models accounting for article content alone.

We found a strong correlation between our prediction precision and drug occurrence frequency in

literature (r=0.74, p<0.001), implying that our predictors work best for diseases whose relevant

drugs are frequently mentioned in prior research.

COVID-19 Therapy and Vaccine Prediction

We also considered therapies and vaccines to treat or prevent SARS-CoV-2 infection. Here

prediction year was set to 2020 (Fig. S1C), when the global search for relevant drugs and

vaccines began in earnest. Following Gysi et al. (23), we considered a therapy relevant to

COVID-19 if it amassed evidence to merit a COVID-related clinical trial, as reported by

ClinicalTrials.gov. Results shown in Fig. 2D indicate that 36% and 38% of the predictions made

by transition probability and deepwalk-based metrics entered trials within 12 months of the date

of prediction (i.e., end of Dec, 2020), respectively, which further increased to 42% by the end of

July, 2021. This is 350 to 400% higher than the precision of discovery candidates generated by

semantic content alone (10% after the first 12 months and 12% overall). These precisions were

even higher than a predictive model based on an ensemble of deep and shallow learning

predictors trained on multiply measured protein interactions between COVID-19 and the pool of

3,948 relevant compounds from DrugBank (23), detailed and relevant information to which our

model was blind (see Fig. S3 for alternative evaluation).

The success of these COVID-19 predictions suggests how fast-paced research on COVID

therapies and vaccines increased the relevance of scientists’ prior research experiences and

relationships for the therapies and vaccines they would come to imagine, evaluate and champion
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in clinical trials. Consider the clinical trial of the female progesterone for treating COVID-19

(24). The trial was motivated by factors including the lower global death rate of women than

men from COVID-19 and anti-inflammatory properties of progesterone that may moderate the

immune system’s overreaction to COVID-19 in men (25). Random walks from our method

frequently walked the path between “coronavirus” and “progesterone” literatures to predict

clinical study of progesterone for coronavirus complications (Fig. S4). Our technique traced a

pathway similar to the one articulated explicitly by researchers sponsoring the trial: 75% of

trial-cited papers, published within the five-year period we considered in building our

hypergraph (2015-2019), were identified by our prediction model, and 60% of scientists

authoring those studies were sampled in our random walk sequences.

Expert-Sensitive Prediction

Our predictive models use the distribution of discovering experts to successfully improve

discovery prediction. To demonstrate this, we consider the time required to make a discovery.

Materials cognitively close to the community of researchers who study a given property receive

greater attention and are likely to be investigated, discovered and published earlier than those

further from the community. In other words, “time to discovery” should be inversely

proportional to the size of the expert population aware of both property and material. We

measure the size of this population by defining expert density as the Jaccard index of two sets of

experts: those who mentioned a property and those who mentioned a specific material in recent

publications. For all three electrochemical properties mentioned earlier, COVID-19 therapies and

vaccines, and a majority of the 100 diseases we considered above, correlations between

discovery date and expert densities were negative, significant and substantial (Fig. S5). This
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confirms our hypothesis that materials considered by a larger crowd of property experts are

discovered sooner. Our predictive models efficiently leverage the hypergraph of past publications

to incorporate these expert densities (Fig. S6). Similar results can be derived based on

embedding proximities: Fig. 3A illustrates how our predictions cluster atop density peaks in a

joint embedding space of experts and the materials they investigate. These expert-material

proximities are able to predict discoverers most likely to publish discoveries based on their

unique research backgrounds and relationships. Moreover, computing the probability of

transition from properties to expert nodes through a single intermediate material across 17

prediction years (2001 to 2017), we found that 40% of the top 50 ranked potential authors

became actual discoverers of thermoelectric and ferroelectric materials one year after prediction,

and 20% of the top 50 discovered novel photovoltaics (Fig. 3, bottom; see also Fig. S7).

Punctuating science by imagining the unimaginable

As illustrated above, by identifying properties and materials cognitively available to human

experts, we maximize the precision of predicting published material discoveries. Our algorithm

owes its success to the fact that almost all published discoveries lie in close proximity to desired

properties based on our literature hypergraph (Fig. S8A). This is because scientists research and

publish about materials and properties discovered through previous experience and

collaborations traced by it. By contrast, if we avoid the distribution of human experts, we can

produce “alien” predictions designed to complement rather than mimic the scientific community.

These predictions are cognitively unavailable to human experts based on the organization of

scientific fields, prevailing scientific attention, and expert education, but nevertheless manifest

heightened promise for possessing desired scientific properties (Fig. S8B). Here, we propose,

10



pilot and test a framework that arbitrages disconnections in the hypergraph of science to identify

disruptive discovery candidates more likely to possess desired properties than those that

scientists investigate, which are unlikely to be discovered in the near future without machine

recommendation (Fig. 1A, right).

Our framework combines two components: a human availability component that measures the

degree to which candidate materials lie within or beyond the scope of human experts’ research

experiences and relationships, and a scientific plausibility component that amplifies predictions

with promise as consistent with existing research and theory (Fig. 4A). We transform the two

component scores into a unified scale and linearly combined them with a simple mixing

coefficient 𝛽. Setting 𝛽=0 implies an exclusive emphasis on scientific plausibility, blind to the

distribution of experts. Decreasing 𝛽 imitates human experts and increasing 𝛽 avoids them. At

extremes, 𝛽=-1 and 1 yield algorithms that generate predictions very familiar or very strange to

experts, respectively, regardless of scientific merit. Non-zero positive 𝛽s balance exploitation of

relevant materials with exploration of areas unlikely considered or examined by human experts.

Materials with the highest scores are reported as the algorithm’s prediction and evaluated as

candidates for disruptive discovery. We can quantify human availability with any graph distance

metric varying with expert density (e.g., unsupervised neural embeddings, Markov transition

probabilities, self-avoiding walks from Schramm-Loewner evolutions). Here we use shortest

path distances between properties and materials, interlinked by authors, as above. We can

quantify scientific plausibility by unsupervised embeddings of published knowledge (17),

theory-driven simulations of material properties, or both. Here we use unsupervised knowledge

embeddings for our algorithm, reserving theory-driven simulations to evaluate the value and
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human complementarity of our predictions. To evaluate thermoelectric promise, power factor

(PF) represents an important component of the overall thermoelectric figure of merit, zT,

calculated using density functional theory for candidate materials as a strong indication of

thermoelectricity (26, 27). To evaluate ferroelectricity, estimates of spontaneous polarization

obtained through symmetry analysis and first-principle equations serve as a reliable metric for

this property (28). For human diseases and COVID-19, proximity between disease agents (e.g.,

SARS-CoV-2) and candidate compounds in protein-protein interaction networks suggests the

likelihood a material will recognize and engage with the disease agent (23) (see Supplementary

Text for more details).

We evaluate the degree to which our predictions complement human science in two ways. First,

we demonstrate that more alien predictions, if discovered by the scientific community, are

discovered long after prediction—much later than the scientist-mimicking predictions described

earlier, once the community has filled in knowledge gaps separating valued properties and

unfamiliar materials (Fig. 4B). Second, we demonstrate that more alien or human-avoiding

predictions (those with a higher 𝛽) increase the scientific promise versus those made and

published by the scientific community, as assessed using the precomputed theoretical scores

described above. We note that this is a very conservative estimate of scientific promise for alien

predictions because it is based on widely-accepted, scientist-crafted and theory-inspired or

data-driven simulations. Nevertheless, even in this case, we show that by avoiding the human

crowd, higher 𝛽s can improve even this conventional measure of predicted promise. Specifically,

we evaluate the complementary performance of our alien predictor by verifying that the

simulated quality of predictions corresponds with significantly higher values of 𝛽 than for
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materials actually discovered. To assess this, we computed the difference between expected

values of 𝛽 conditioned on when the prediction is scientifically promising and when it is found

and published. A positive expectation gap measures the increase in 𝛽 (or “alienness”) that would

maximize the prediction of materials with theoretically expected properties. As shown in Fig.

4C, for the vast majority of the properties that we considered in this section, the expectation gap

is significantly positive. Building on this, we directly calculate the complementarity of a

prediction from our algorithm for the human scientific community in two ways. First, we

compute the probability that it is plausible but not discoverable for any particular value of 𝛽

(Figs. S8D, S8E). Second, we note the minimal overlap between published discoveries and alien

predictions, which nevertheless retain or increase their theoretical merit (Fig. S9).

Discussion

We demonstrate the power of incorporating expert-awareness into artificial intelligence systems

for accelerating and punctuating future discovery. Our models succeed by directly predicting

human discoveries and the human experts who will make them, yielding an average of 100%

improvement in prediction precision. By tuning these algorithms to avoid the crowd, however,

they generate even more promising hypotheses unlikely to be imagined, pursued or published

without machine recommendation for years into the future. By identifying and correcting for

collective patterns of human attention, formed by field boundaries and institutionalized

education, these models complement the contemporary scientific community. A further class of

alien predictions could be tuned to compensate not only for emergent collective bias, but

universal cognitive constraints, such as limits on the human capacity to conceive or search

through complex combinations (e.g., high-order therapeutic cocktails (29)). Disorienting
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hypotheses from such a system will not be beautiful, but being inconceivable, they break fresh

ground and sidestep the path-dependent “burden of knowledge” where scientific institutions

require new advances built upon the old for ratification and support (30, 31).

Our approach can also be used to identify individual and collective biases that limit productive

exploration and suggest opportunities to improve human prediction by reformulating science

education for discovery. Insofar as research experiences and relationships condition the questions

scientists investigate, education tuned to discovery would conceive of each student as a new

experiment, recombining knowledge and opportunity in novel ways. Our investigation

underscores the power of incorporating human and social factors to produce artificial intelligence

that complements rather than substitutes for human expertise. By making AI hypothesis

generation aware of human expertise, it can race with rather than against the scientific

community to expand the scope of human imagination and discovery.
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Fig. 1. (A) Two possible scenarios when there exists a hidden underlying relationship between material M and property P waiting

to be discovered. Uncolored circles represent non-overlapping populations of human experts and colored nodes indicate a

material (colored in blue) or a property (colored in red). Solid lines between uncolored and colored nodes imply that the experts

represented by the former studied or have experience with the material or property denoted by the latter. Dashed lines represent

existing property-material links that have not been discovered yet. The P-M relation in the left scenario is likely to be discovered

and published in the near future, but is likely to escape scientists’ attention in the right scenario; it would disrupt the current

course of science. (B) Four example random walk paths starting from “Coronavirus” node (property) and ending in

“Progesterone” (a chemical under clinical trial investigation for therapeutic efficacy). Each arrow connecting two nodes indicates

a sampling step, where the paper shown on top of the receiving node comprises a hyperedge containing both the prior step and

the current step sampled nodes. (C) Illustration of our hypergraph deepwalk algorithm: 1) We construct a hypergraph based on a

literature represented by three papers here. Uncolored shapes represent authors and colored shapes indicate properties (red) or

materials (blue) mentioned in the title and abstract of articles. 2) We perform classic or 𝛼-modified random walk sampling, which

3) results in a set of sequences consisting of authors, materials and the considered property. 4) We remove authors from the

sequences to keep only the materials on which the discovery inference will be applied. 5) We train a word embedding model
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(e.g., Word2Vec) on the sampled sequences of material/property tokens, which results in 6) a vector representation of the

materials and property we use to compute pairwise cosine similarities for prediction.
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Fig. 2. Precision rates of discovery for materials associated with different properties and prediction years: (A-C) chemical

compounds and electrochemical properties including thermoelectricity, ferroelectricity, and photovoltaic capacity, respectively,
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with prediction years varying from 2001 to 2017; (D) therapeutics and vaccines for COVID-19 for the prediction year 2020; (E)

general disease-drug associations for prediction year 2001. Precisions reported for general disease-drug associations are

individual rates computed 19 years after prediction year, but computed annually for electrochemical properties and monthly for

COVID-19 efficacy (See Fig. S1C). Gray bars in Figs. (A-D) indicate the number of new discoveries occurring in reality for each

month or year of the prediction period. Predictions accounting for the scientific community are far superior to those that ignore

them.
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Fig. 3. (A-C) 2D projections of expert-sensitive material predictions made by deepwalk (blue circles) and content-exclusive

word2vec model (red circles) for thermoelectricity (left), ferroelectricity (center) and photovoltaic capacity (right). Circles with

center dots indicate true positive predictions discovered and published in subsequent years and empty circles are false positives.

Predictions are plotted atop the density of experts (topo map and contours estimated by Kernel Density Estimation) in a 2D

tSNE-projected embedding space. Before applying tSNE dimensionality reduction, the original embedding was obtained by

training a word2vec model over sampled random walks across the hypergraph of published science. Red circles are more

uniformly distributed, but blue circles concentrate near peaks of expert density. (D) Precision rates for predicting discoverers of

materials with electrochemical properties. Predictive models are built based on two-step transitions between property and expert

nodes with an intermediate material in the transition path. Bars show average precision of expert predictions for individual years.

An expert can publish a discovery in multiple years. Total precision rates are also shown near each property ignoring the

repetition of discovering experts.
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Fig. 4. (A) Diagram of our alien artificial intelligence. In the first step, the scores undergo the same transformation T, which is a

combination of standardization and normalization, to be mapped into comparable scales. The transformed scores will then be

linearly combined with parameterized by signed coefficient 𝛽 varying from -1 (the most human-like prediction) to +1 (the most

alien prediction) via 0 (neutral predictions, blind to human availability). For intermediate values of 𝛽, both plausibility and

alienness contribute to the final scores. When 𝛽>0, alienness contributes positively and when 𝛽<0, its contribution is negative

(encouraging human-like predictions). (B) Average discovery dates for the discovered predictions generated with various values

of 𝛽. (C) Plots of 𝛽 likelihoods given plausibility and discoverability when varying 𝛽 from -1 to +1, and the resulting expectation

gaps for each property. In the case of CTD diseases, where we only considered 45 diseases for which we had available theoretical

drug relevance scores (see Supplementary Text), the final gap has been shown individually (bar chart) and collectively (the

histogram).
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Materials and Methods

Supplementary Text

Figs. S1 to S9

Fig. 1. How and why our expert-aware discovery prediction algorithm works, illustrated
with an example. (A) Two possible scenarios when there exists a hidden underlying relationship
between material M and property P waiting to be discovered. Uncolored circles represent
non-overlapping populations of human experts and colored nodes indicate a material (colored in
blue) or a property (colored in red). Solid lines between uncolored and colored nodes imply that
the experts represented by the former studied or have experience with the material or property
denoted by the latter. Dashed lines represent existing property-material links that have not been
discovered yet. The P-M relation in the left scenario is likely to be discovered and published in
the near future, but is likely to escape scientists’ attention in the right scenario; it would disrupt
the current course of science. (B) Four example random walk paths starting from “Coronavirus”
node (property) and ending in “Progesterone” (a chemical under clinical trial investigation for
therapeutic efficacy). Each arrow connecting two nodes indicates a sampling step, where the
paper shown on top of the receiving node comprises a hyperedge containing both the prior step
and the current step sampled nodes. (C) Illustration of our hypergraph deepwalk algorithm: 1)
We construct a hypergraph based on a literature represented by three papers here. Uncolored
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shapes represent authors and colored shapes indicate properties (red) or materials (blue)
mentioned in the title and abstract of articles. 2) We perform classic or 𝛼-modified random walk
sampling, which 3) results in a set of sequences consisting of authors, materials and the
considered property. 4) We remove authors from the sequences to keep only the materials on
which the discovery inference will be applied. 5) We train a word embedding model (e.g.,
Word2Vec) on the sampled sequences of material/property tokens, which results in 6) a vector
representation of the materials and property we use to compute pairwise cosine similarities for
prediction.

Fig. 2. Evaluating our expert-aware discovery predictions against various baselines.
Precision rates of discovery for materials associated with different properties and prediction
years: (A-C) chemical compounds and electrochemical properties including thermoelectricity,
ferroelectricity, and photovoltaic capacity, respectively, with prediction years varying from 2001
to 2017; (D) therapeutics and vaccines for COVID-19 for the prediction year 2020; (E) general
disease-drug associations for prediction year 2001. Precisions reported for general disease-drug
associations are individual rates computed 19 years after prediction year, but computed annually
for electrochemical properties and monthly for COVID-19 efficacy. Gray bars in Figs. (A-D)
indicate the number of new discoveries occurring in reality for each month or year of the
prediction period. Predictions accounting for the scientific community are far superior to those
that ignore them.

Fig. 3. Visualizing the distribution of authors in the vicinity of our expert-aware predictions
versus content-exclusive predictions, and illustrating the performance of our
hypyergraph-based algorithm in identifying the discovering authors. (A-C) 2D projections
of expert-sensitive material predictions made by deepwalk (blue circles) and content-exclusive
word2vec model (red circles) for thermoelectricity (left), ferroelectricity (center) and
photovoltaic capacity (right). Circles with center dots indicate true positive predictions
discovered and published in subsequent years and empty circles are false positives. Predictions
are plotted atop the density of experts (topo map and contours estimated by Kernel Density
Estimation) in a 2D tSNE-projected embedding space. Before applying tSNE dimensionality
reduction, the original embedding was obtained by training a word2vec model over sampled
random walks across the hypergraph of published science. Red circles are more uniformly
distributed, but blue circles concentrate near peaks of expert density. (D) Precision rates for
predicting discoverers of materials with electrochemical properties. Predictive models are built
based on two-step transitions between property and expert nodes with an intermediate material in
the transition path. Bars show average precision of expert predictions for individual years. An
expert can publish a discovery in multiple years. Total precision rates are also shown near each
property ignoring the repetition of discovering experts.

Fig. 4. Design and performance of “alien” AI predictions. (A) Diagram of our alien artificial
intelligence. In the first step, the scores undergo the same transformation T, which is a
combination of standardization and normalization, to be mapped into comparable scales. The
transformed scores will then be linearly combined with parameterized by signed coefficient 𝛽
varying from -1 (the most human-like prediction) to +1 (the most alien prediction) via 0 (neutral
predictions, blind to human availability). For intermediate values of 𝛽, both plausibility and
alienness contribute to the final scores. When 𝛽>0, alienness contributes positively and when
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𝛽<0, its contribution is negative (encouraging human-like predictions). (B) Average discovery
dates for the discovered predictions generated with various values of 𝛽. (C) Plots of 𝛽 likelihoods
given plausibility and discoverability when varying 𝛽 from -1 to +1, and the resulting expectation
gaps for each property. In the case of CTD diseases, where we only considered 45 diseases for
which we had available theoretical drug relevance scores (see Supplementary Text), the final gap
has been shown individually (bar chart) and collectively (the histogram).
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